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Figure 1: Uncertainty-aware pipeline used for an evaluation of the uncertainty principle. Using the original dataset (a), four different
uncertainty measures (b) are being computed. The uncertainty measures and the original dataset are used to smooth the image
with an uncertainty-aware gauss filter (c) to reduce noise. The smoothed image and the underlying uncertainty measures are utilized
to cluster the image obtaining a weight for each pixel. For these weights an iso-line visualization bordering regions with similar
uncertainty behavior can be computed (d). In this visualization, multiple points can be selected by the user to show the respective
uncertainty values for each measure in a parallel coordinates plot (e), allowing intuitive exploration of the dataset.

ABSTRACT

The acquisition process of real world data is usually affected by un-
certainty, that can have a huge impact for decision making processes.
The uncertainty principle tries to address this problem and gives
guidelines to quantify, propagate and communicate the uncertainty
of a dataset. Although there exist a variety of work that addresses
this principle, the uncertainty principle is not evaluated fully. In this
work, we utilize a tumor detection scenario from the medical area
and applied the uncertainty principle in its entirety. Based on this,
we performed a user evaluation that tries to identify the quality of
the uncertainty principle in comparison to a standard visualization
approach. We summarize the pros and cons of the uncertainty prin-
ciples according to different measures. Our study shows, that the
uncertainty principle helps users to detect the boundary with more
certainty and understand the quality of the underlying image data.

Index Terms: Uncertainty—Evaluation—Image Processing

1 INTRODUCTION

In a variety of real world applications, state of the art image process-
ing techniques are barley used [7]. This is caused by a variety of
factors, where the communication of uncertainty was identified to
be crucial [8]. For most of these applications the considered data
is affected by uncertainty, which means that measures may vary
around the actual measured point [1]. This data uncertainty has a
huge impact on the utilized image processing techniques and can
cause wrong or miss-leading results for a decision making process.

Clinical image data, such as CT or MRI scans are a prominent
example of real world datasets containing uncertainty. Here, a model
is used to reconstruct the captured signals to image pixels, thereby
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introducing uncertainty [14]. In clinical daily routine, medical doc-
tors need to consider these image data to define the actual issue and
proceed a suitable treatment.

Sacha et al. [12] formulated guidelines, that need to be fulfilled
to promote an uncertainty-aware visualization. In this paper, we aim
to evaluate these criteria utilizing a dataset from the medical domain.
This evaluation compares the slice-by-slice reviewing methodology,
which is utilized in clinical routine, to an uncertainty-aware image
processing approach. The approach is composed of uncertainty-
aware image processing operations, an uncertainty-aware visualiza-
tion and an interaction technique. This allows a comparison of the
uncertainty principle with a state of the art visualization.

Therefore, this paper contributes:

• An evaluation of the uncertainty-awareness guidelines based
on a real world scenario

• A summary of advantages and disadvantages for the imple-
mentation of the uncertainty principle

The presented evaluation shows, that the uncertainty-aware image
processing approach is helping users to identify interesting areas in
the given dataset. The tool also uses a parallel coordinates plot to let
the user select distinct points to examine their uncertainty properties.
This helps to find out which areas are certain or uncertain.

2 GUIDELINE DESCRIPTION

Uncertain data is defined as data that may contain values within
some margin of error, which deviates the measured point from the
intended or correct result [3]. This effect is caused through the data
acquisition process, that is usually a model based reconstruction of
sensor captured values.

This work aims to evaluate the uncertainty-awareness criteria
originally defined by Sacha et. al. [12]. They proposed four require-
ments, that need to be fulfilled to achieve uncertainty-awareness in a
visualization, namely:



• C1 Quantify uncertainty in each point

• C2 Visualize uncertainty information

• C3 Enable interactive uncertainty propagation

• C4 Propagate and aggregate uncertainty

Based on this work, Gillmann et al. [3] identified the clear lack of
an implementation for these requirements in open source solutions.
Therefore, they proposed a novel data transformation pipeline, that
is aware of the uncertainty-awareness criteria C1-C4.

To achieve this, an input dataset needs to be extended by an uncer-
tainty measure (C1). This extended dataset, namely U-dataset is the
novel input of an adapted data transformation pipeline. This pipeline
(U-Pipeline) is required to not solely transform the data values, but
additionally transform the underlying uncertainty information (C4).
Throughout each data transformation step, the uncertainty needs
to be visualized and interactively explorable by users, while the
uncertainty gets propagated to the next pipeline step (C2, C3).

Figure 2: Overview of the U-Pipeline used for the presented evaluation.
At first, a raw dataset is utilized as an input. Using the raw dataset,
an arbitrary amount of uncertainty measures can be selected by the
user to create an uncertainty quantification. Both the raw dataset and
the uncertainty quantification are used in the U-Pipeline to apply an
operation forming a new dataset. The uncertainty measures influence
the outcome of the new dataset in such a way, that uncertain pixels
are considered less.

Figure 2 shows the extended data transformation pipeline accord-
ing to Gillmann et al. [6]. In this paper, uncertainty-aware image
pre-processing operations such as histogram equalization, brightness
thresholding, clearing areas and detecting edges are presented. Each
of these operations are able to transform a U-Dataset in its entirety.
These operations can be applied in an arbitrary way, where the out-
put of one operation can be used as an input in the next operation. It
is also possible to add, subtract and compare two datasets. This is
enabled by the used pipeline witch uses the U-Pipeline to propagate
and aggregate the uncertainty measures. This gives every step in the
pipeline a distinct U-Dataset, providing the user with the ability to
visualize every intermediate step to gain a broad overview over the
whole dataset.

3 EXPERIMENT

To verify if users will accept and use the uncertainty principle and
to determine if this principle improves the decision making process,
an evaluation was conducted. In this experiment the U-Pipeline is
utilized for a medical dataset. Then the results are compared to a
method used in clinical daily routine utilizing a questionnaire. This
section presents the results of the evaluation and summarizes the
pros and cons while implementing the uncertainty principle.

3.1 Application Scenario
In this experiment a dataset of a human brain with an internal tumor
[13] was used. The intention of using that dataset is that a clear
border between the tumor and healthy tissue does not exist. In many
cases, tumors do not separate clearly from their surrounding tissue.

This increases the difficulty for doctors when trying to determine the
size, shape and location of the tumor [11]. The dataset also includes
two zones of tumorous tissue with a core segment and a surrounding
bright area that should both be examined by the user.

As the tumor is not showing clear borders, finding all areas and
defining a separation between healthy and tumorous tissue is the
main challenge in the presented example.

3.2 Experimental Setup
In order to evaluate the uncertainty principle, defined by Sacha et
al. [12], the presented dataset is utilized. We performed a study
where users are asked to detect the tumor and its boundary.

We restrict the presented use case to the one slice in Figure 1
a) of the presented data set to exclude interferences of the eval-
uation results by three-dimensional effects such as visual clutter.
In this questionnaire the user is asked to draw the border of the
tumor in two different scenarios. First, users are asked to fulfill
the task when solely providing them with the slice-by-slice review-
ing technique utilized in clinical daily routine. Second, users are
asked to fulfill the same task while utilizing an uncertainty-aware
visualization approach from Figure 1 d) capable of including all
uncertainty awareness requirements (C1-C4). The participants of
the presented evaluation were asked to rate the ability of each visual-
ization technique to indicate the tumor boundary. This gives a direct
comparison between the slice-by-slice visualization, often used in
medicine, and the novel uncertainty-aware visualization. The de-
tailed questionnaire that was utilized can be found in the additional
material.

To achieve an uncertainty-aware visualization, the iso-line repre-
sentation (Figure 1d) given by Gillmann et al. [5], was utilized. The
method requires an uncertainty quantification of the input dataset.
Here, an arbitrary amount of uncertainty measures can be utilized to
output an uncertainty vector for each image pixel. In the presented
case we utilized the gaussian error [4], the brightness measure [2],
the local range error [15] and the salt and pepper noise [10], as seen
in Figure 1 b). These measures were used to create the a U-Dataset.
This U-Dataset quantifies the uncertainty in each point, achieving
the first criteria(C1) for uncertainty-aware visualization techniques.
We applied a gaussian filter in Figure 1 c) to the U-dataset to filter
the contained noise in the dataset. Here, the underlying uncertainty
was utilized to refine the gaussian filter, such that it considers un-
certain datapoints less. This allows a propagation of the uncertainty
quantification in the original dataset. While filtering the noise in the
original dataset, the uncertainty vectors for each pixel also change,
propagating and aggregating the uncertainty vectors for the given
transformation (C4). This result is utilized to create the uncertainty-
aware visualization presented by Gillmann et al. [5]. The technique
utilized iso-lines bordering regions with the same uncertainty be-
havior, dividing the dataset into similar regions while showing the
original slice in the background (C2). In addition, the technique
allows a visual exploration of the uncertainty space by allowing
users to select specific image pixels and representing the respective
uncertainty vectors in a parallel coordinate plot (C3).

3.3 Evaluation Results
We asked 12 persons to participate in our questionnaire based evalu-
ation. The results of this evaluation can be found below.

The age of the attended participants had an average of 27 and
we had a ratio of two males over one female. Their working fields
ranged from computer science over mechanical engineering to hu-
man biology.

At first the participants were requested to draw a border around the
tumor on a slice and asked, if they are certain about their decision.
For most of the participants it was not clear if they selected the
correct tumor border or if they were able to capture all parts of the
tumor. This resulted in a mean of 2.2 of 5 points utilizing the Likert



Figure 3: Analysis of the questionnaire result. At first, the participants of the questionnaire were uncertain about the location of the tumor when
solely considering the gray scale picture(a) from Figure 1 a). For the proposed iso-line visualization in Figure 1 c) a significant improvement can be
achieved (b) where more people were certain about the tumors location. The parallel coordinates view as seen in Figure 1 e) showed that the
points on the interior of the tumor boundary are more certain (c) than the one lying outside the boundary (d).

scale. The exact distribution of values can be seen in Figure 3 a).
The results show, that defining the tumor border is not an easy task.
Considering the fact, that this is an important feature to determine
for medical doctors, the importance of this problem becomes clear.

To compare the slice-by-slice method to the uncertainty-aware
visualization, the iso-line representation from Figure 1 d) was pre-
sented to our participants. The users were prompted to tell how
certain they are about the tumors location when considering the
uncertainty-aware visualization approach. The mean of the resulting
scores given by the users is 3.1. This means an average improvement
of 0.9 points to the slice-by-slice method. The exact distribution of
the given scores can be seen in Figure 3 b). Since a Shapiro-Wilk test
revealed that both data series are not normally distributed (p-value of
0.03528(3a) and 0,01507(3b)), a t-test could not be conducted. But
the advantage of this visualization still becomes clear when looking
at the average improvement of 0.9 points.

In the last step of the questionnaire, points on the iso-line picture
were selected and their uncertainty measures were shown in a parallel
coordinates plot. The points where depicted, such that they are
located close to the iso-line indicated border of the tumor. Here,
some points are located outside the border and some inside the
border. Supported by the resulting parallel coordinate plot, users
had to state if they think that the inner points (Figure 3 c) and the
outer points (Figure 3 d) are certain. For the inner points, people
found that they are mostly certain. The outer points on the other
hand, were seen as rather uncertain. Here, it becomes clear, that the
parallel coordinates view with explicit points is able to indicate the
exact uncertainty value of an image point.

In conclusion, it can be seen that the proposed uncertainty-aware
visualization is supporting the users to understand the dataset and its
uncertainty better, as they can focus on areas with the same behavior
under the selected uncertainty measures from Figure 1 b). For the
parallel coordinates plot, users found out, that points located inside
the tumorous tissue are more certain than the ones outside this region.
This information can help clinicians to find regions which could be
affected by the tumor, but don’t show a clear appearance of tumor
tissue.

The proposed use case showed a significant improvement when
using an uncertainty-aware visualization. The user study showed
that the participants are able to perform a more certain decision
making, which is also supported by the following, very motivating
statements:

• Areas were grouped together which are not obviously corre-
lated

• Faster decisions can be made

• Objective, absolute and discrete information can be seen

• Similar regions can be seen better

In the medical field of application, tumors and other degenerated
tissue often have fluent transitions to healthy tissue. By utilizing
uncertainty visualizations, transition zones can be determined and
the probability of a data point being affiliated with one or the other
tissue can be specified.

The utilized pipeline enables the user to filter noise with different
kernels, detect edges by various operators and cut away nonessential
information in an easy to use system. Each step in the pipeline can
be used by simply applying an operation to one or two U-Datasets.
The used operations in the pipeline can be extended as the need for
new procedures arise, leaving the user unrestricted.

4 SUPPORTING ELEMENTS

Although a medical dataset is analyzed in this work, other data can
also be processed with the used visualization by selecting different
pre-processing steps and connecting them together. Most kernels
and operations can be implemented and used in the pipeline, creating
different intermediate steps, which can be combined and compared
resulting in a processed image. This processed image can help to
analyze the dataset faster.

Uncertainty measures for the uncertainty quantification can be
selected arbitrarily, to find the ones giving the most support for
the specified task. To find the most useful measure, this high-
dimensional space can be visually inspected by looking at every
measure one by one. Measures with no direct relation to the given
use case can be neglected that way. Even no uncertainty measures
can be selected, to adapt to cases where the propagation of uncer-
tainty is not necessary. That means that the underlying U-Dataset
can be effectively created and used as desired by the user, as shown
in Figure 2.

5 REJECTING ELEMENTS

To use the tool on high resolution datasets that origin from new
scanning devices, a dedicated infrastructure is required. The used
computers have to be capable of computing the required steps in a
sufficiently short amount of time while also giving a smooth rep-
resentation of the dataset. Since computer hardware is becoming
cheaper, more compact and powerful, this issue will solve itself over
time. In addition, data systems in the respective area need to be ca-
pable of saving the additional information generated throughout the
uncertainty-aware pipeline (uncertainty-quantification, intermediate
computational steps, selections ...).

Another aspect of the needed infrastructure is, that people using
the software have to learn how to use it. Users need time to adapt
to the new software and techniques used in modern medicine. Here,
the educational system needs to be adapted. There exist novel
approaches how to teach people theses new skills. One of them is
being suggested by Gillmann et. al. [9], presenting a concept lecture
aiming to impart image processing and visualization principals for
students in medicine.



6 DISCUSSION

To find out if the used tool is powerful and can be used in day-to-day
operations, criteria for successful visualizations defined by Gillmann
et al. [7] are being tested.

For the usability of the tool, a low difficulty degree for using
the visualization and data pipeline is achieved through easy data
manipulation. Here, the user has to select an operation and a dataset,
to create the next dataset in the pipeline. For any of these datasets,
the iso-surface visualization can be created with one button click.

For tool efficiency, namely the consumption of resources, main
memory consumption is one of the biggest issues. For every raw
data volume, an arbitrary amount of uncertainty measures have to be
created as well as for every step in the pipeline. This should be kept
in mind when buying dedicated hardware, but will be less important
for future applications as computer hardware improves.

The Correctness of a program shows how accurate a visual repre-
sentation is, while the communication of uncertainty is also required
for a good visualization. For the used tool, the communication of
uncertainty has been shown before. The iso-surface visualization
itself uses this uncertainty information, creating a good representa-
tion of the underlying information. For the parallel coordinates view
it becomes clear that it shows the exact values of the underlying
uncertainty measures.

Flexibility means that different tasks of an application can be
executed. This is not solely valid for medical image data, but for
every image data that can be loaded as a volume. Any volume can
be analyzed and processed, since the user can select the most useful
uncertainty measurements for the given application. The pipeline
itself is also completely flexible, as any operation can be applied at
any time.

The last criteria to be discussed is the intuitiveness of the tool,
which declares that the user does not need to have a deeper back-
ground knowledge about the programs procedures. Since uncertainty
measures have a dedicated representation and every pipeline step
can be visualized, the user can find the best visual representation by
trial and error.

In the given experiment, only medical image data was examined
in order to investigate if improvements can be made in clinical daily
routine using uncertainty-aware visualizations. In other application
fields, given the error introduced by data acquisition, these tech-
niques can also be applied. Since reconstruction of real world data
introduces uncertainty, field experts can use uncertainty information
to improve decision-making. Natural disaster forecasts could be
made with plans for every scenario and material testing could show
points of failure more certain.

7 IMPLICATIONS / CONSIDERATIONS

Our evaluation showed, that the inclusion of uncertainty information
is crucial for gaining user acceptance for novel visualization ap-
proaches. The implementation of all 4 uncertainty criteria provides
a significant improvement in the decision making process. Although
requiring a suitable infrastructure and teaching effort, the utilization
of an uncertainty-aware visualization is beneficial.

The evaluation of the uncertainty principle also showed, that all
four defined requirements for uncertainty-awareness are required
and sufficient to achieve an uncertainty-aware visualization.

When implementing the uncertainty-principles to further applica-
tion scenarios, the following guidelines need to be kept in mind:

• An uncertainty quantification of the utilized dataset need to be
found (e.g. high-dimensional data, time-dependent data...)

• An uncertainty-aware visualization, that is able to address the
defined requirements needs to be found

• A suitable data management and teaching infra-structure needs
to be employed

8 CONCLUSION

The paper presents an evaluation of an uncertainty-aware data trans-
formation pipeline. This is achieved by using an iso-surface visu-
alization and a parallel coordinates plot presenting the uncertainty
information, comparing it to the slice-by-slice visualization used in
clinical daily routine. As example data, a brain tumor dataset was be-
ing examined by the participants of the questionnaire to quantify the
usefulness of the evaluated tool. The results showed an improvement
of user certainty when bordering degenerated tissue. The parallel
coordinates plot also helped the participants to decide if a region can
be seen as certain or uncertain, improving their selection even more.

The overall results show that the embedding of uncertainty-aware
data transformation pipelines and visualizations into clinical daily
routine is possible nowadays and can help medical doctors to exam-
ine data faster and to create better treatment plans.
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